Recursos digitales de aprendizaje en la física universitaria: una revisión de alcance sobre el uso estudiantil y las tendencias del conocimiento

Contenido principal del artículo

Narciso Verón Rojas
Nicolas Fernandez Astudillo
Nelson Sepulveda
Ignacio Julio Idoyaga

Resumen

Esta revisión de alcance explora los recursos digitales de aprendizaje empleados en la enseñanza de la física en la educación superior y cómo los y las estudiantes los utilizan. A partir de una búsqueda sistemática en bases académicas y el análisis de referencias, se seleccionaron 50 estudios publicados principalmente en los últimos cinco años. Los resultados indican una producción científica global y reciente, centrada en doce categorías de recursos, entre las que destacan laboratorios virtuales, simuladores interactivos, plataformas educativas, inteligencia artificial, gamificación y tecnologías inmersivas. El análisis del conocimiento muestra una concentración temática en simulaciones y entornos virtuales, mientras que tecnologías emergentes aún ocupan un lugar marginal, lo que revela brechas de investigación. Se identificaron cinco formas en que los y las estudiantes usan estos recursos: para experimentar de manera virtual, visualizar fenómenos físicos, colaborar en línea, autoevaluarse con retroalimentación inmediata y desarrollar habilidades metacognitivas y digitales. Estos usos reflejan prácticas activas y centradas en el aprendizaje, siempre mediadas por el diseño pedagógico. Aunque se reportan beneficios como mayor comprensión conceptual y autonomía, persisten desafíos relacionados con la desigualdad en el acceso y la necesidad de formación docente. La revisión concluye que, pese al crecimiento de recursos multimodales, el campo carece de coherencia pedagógica: la mera disponibilidad tecnológica no garantiza aprendizajes profundos. Por ello, se recomienda fortalecer la formación docente en diseño instruccional, promover investigaciones en contextos no anglosajones y explorar el potencial educativo de tecnologías emergentes desde marcos didácticos intencionados.

Detalles del artículo

Cómo citar
Verón Rojas, N., Fernandez Astudillo, N., Sepulveda, N., & Idoyaga, I. J. (2025). Recursos digitales de aprendizaje en la física universitaria: una revisión de alcance sobre el uso estudiantil y las tendencias del conocimiento. Campo Universitario, 6(12). Recuperado a partir de //campouniversitario.aduba.org.ar/ojs/index.php/cu/article/view/132
Sección
Artículos

Citas

Abdoune, A., Meraoui, M., Abderrahman, M., & Khaldi, M. (2024). Using multimedia learning theory in physics teaching and learning: Work methodology. Global Journal of Engineering and Technology Advances, 21(3), 0230. https://doi.org/10.30574/gjeta.2024.21.3.0230

Asencios-Trujillo, L., Asencios-Trujillo, L., LaRosa-Longobardi, C., Gallegos-Espinoza, D., Piñas-Rivera, L., & Perez-Siguas, R. (2024). Virtual Assistance System for Teaching Physics Experiments in University Students. Journal of Advanced Research in Applied Sciences and Engineering Technology, 40(1), 109–117. https://doi.org/10.37934/araset.40.1.109117

Asrizal, A., N, A., Festiyed, F., Ashel, H., & Amnah, R. (2023). STEM-integrated physics digital teaching material to develop conceptual understanding and new literacy of students. Eurasia Journal of Mathematics, Science and Technology Education. https://doi.org/10.29333/ejmste/13275

Azlan, C., Wong, J., Tan, L., Huri, M., Ung, N., Pallath, V., Tan, C., Yeong, C., & Ng, K. (2020). Teaching and learning of postgraduate medical physics using Internet-based e-learning during the COVID-19 pandemic – A case study from Malaysia. Physica Medica, 80, 10–16. https://doi.org/10.1016/j.ejmp.2020.10.002

Bohórquez Guevara, V. M. (2024). Desafíos en la enseñanza de la física: Análisis a partir de una revisión bibliográfica. Ciencia Latina Revista Científica Multidisciplinar, 8(1), 8702–8715. https://doi.org/10.37811/cl_rcm.v8i1.10202

Braun, V., Clarke, V., & Weate, P. (2016). Using thematic analysis in sport and exercise research. En G. Smith & J. McGannon (Eds.), Routledge handbook of qualitative research in sport and exercise (pp. 213–227). Routledge.

Cəfərov, S., Qardaşbəyova, N., Tağiyev, E., & Məhərrəmova, A. (2025). Designing physics lessons and methodology of using electronic educational resources in their conduct. Scientific Works, 2(2), 162–170. https://doi.org/10.69682/arti.2025.92

Chen, C., Wang, F., Huang, Z., Li, Z., Zhao, D., & Zhang, L. (2024). Production and teaching application of micro-video resources for university physics experiments. En 2024 13th International Conference on Educational and Information Technology (ICEIT) (pp. 367–372). IEEE. https://doi.org/10.1109/ICEIT61397.2024.10540996

Chen, L. (2024). Design and research of an intelligent learning system for university physics. Journal of Contemporary Educational Research, 8(7), 1–10. https://doi.org/10.26689/jcer.v8i7.7792

Daineko, Y., Dmitriyev, V., & Ipalakova, M. (2017). Using virtual laboratories in teaching natural sciences: An example of physics courses in university. Computer Applications in Engineering Education, 25(1), e21777. https://doi.org/10.1002/cae.21777

Demera-Zambrano, K. C., García, M. A. R., Cedeño, C. L. C., Navarrete-Solórzano, D. A., Mero, R. C. S., & Moreira, M. V. P. (2023). Aprendizaje Híbrido: La transformación digital de las prácticas de enseñanza. Ciencia Latina Revista Científica Multidisciplinar, 7(1), 9377-9397.

Delgado, F. (2021). Teaching Physics for Computer Science Students in Higher Education During the COVID-19 Pandemic: A Fully Internet-Supported Course. Future Internet, 13(2), 35. https://doi.org/10.3390/fi13020035

Faulconer, E., Griffith, J., Wood, B., Acharyya, S., & Roberts, D. (2018). A comparison of online, video synchronous, and traditional learning modes for an introductory undergraduate physics course. Journal of Science Education and Technology, 27(5), 404–411. https://doi.org/10.1007/s10956-018-9732-6

García-Valcárcel Muñoz-Repiso, A. (2016). Recursos digitales para la mejora de la enseñanza y el aprendizaje. Revista de Educación, 372, 1–20.

Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(1), e1230. https://doi.org/10.1002/cl2.1230

Hwang, G. J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100001. https://doi.org/10.1016/j.caeai.2020.100001

Kharki, K., Berrada, K., & Burgos, D. (2021). Design and implementation of a virtual laboratory for physics subjects in Moroccan universities. Sustainability, 13(7), 3711. https://doi.org/10.3390/su13073711

Kratova, I., Stefanova, G., Kirillova, T., & Proyanenkova, L. (2024). Developing the professional competencies of a physics teacher in a digital learning environment based on the psychological theory of activity. En Proceedings of the 2nd International Interdisciplinary Scientific Conference “Digitalization and Sustainability for Development Management: Economic, Social, and Environmental Aspects” (p. 0182412). AIP Publishing. https://doi.org/10.1063/5.0182412

Kafle, R. (2024). Interactive multimedia in teaching physics concepts effectively. Journal of Nepal Physical Society, 10(1), 1–8. https://doi.org/10.3126/jnphyssoc.v10i1.72833

Lahme, S., Klein, P., Lehtinen, A., Müller, A., Pirinen, P., Rončević, L., & Sušac, A. (2023). Physics lab courses under digital transformation: A trinational survey among university lab instructors about the role of new digital technologies and learning objectives. Physical Review Physics Education Research, 19(2), 020159. https://doi.org/10.1103/PhysRevPhysEducRes.19.020159

Levac, D., Colquhoun, H., & O'Brien, K. K. (2010). Scoping studies: advancing the methodology. Implementation Science, 5(1), 69. https://doi.org/10.1186/1748-5908-5-69

Lidiawati, M. (2024). The role of e-books in learning physics: Literature review. Physics Learning and Education, 2(2), 1–10. https://doi.org/10.24036/ple.v2i2.76

Muliani, D., Azmi, K., Alius, M., Sulvayenti, A., & Amelia, L. (2024). The influence of Classpoint media on the learning motivation of Physics Education Study Program students. Kasuari: Physics Education Journal (KPEJ), 7(1), 1–10. https://doi.org/10.37891/kpej.v7i1.484

Nungu, L., Mukama, E., & Nsabayezu, E. (2023). Online collaborative learning and cognitive presence in mathematics and science education. Case study of university of Rwanda, college of education. Education and Information Technologies, 1–20. https://doi.org/10.1007/s10639-023-11607-w

Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2023). Assessing the impact of multimedia application on student conceptual understanding in Quantum Physics at the Rwanda College of Education. Education and Information Technologies, 1–18. https://doi.org/10.1007/s10639-023-11970-8

Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2023). Multimedia-aided technologies for effective learning of quantum physics at the university level. Journal of Science Education and Technology, 32, 686–696. https://doi.org/10.1007/s10956-023-10064-x

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.rec.2021.03.001

Peng, M., & Wei, X. (2024). Strategies for the application of digital means in teaching university physics. Region - Educational Research and Reviews, 6(10), 1–15. https://doi.org/10.32629/rerr.v6i10.2691

Poultsakis, S., Papadakis, S., Kalogiannakis, M., & Psycharis, S. (2021). The management of digital learning objects of natural sciences and digital experiment simulation tools by teachers. Advances in Mobile Learning Educational Research, 1(2), 58–71. https://doi.org/10.34748/AMLER.2021.01.02.05

Ramaila, S. (2024). Leveraging ICT tools for teaching and learning in the domain of physical sciences. En Education and New Developments 2024 – Volume 1 (pp. 1–10). InScience Press. https://doi.org/10.36315/2024v1end098

Rebollo, M., & García-Romero de Tejada, M. (2016). El laboratorio en el bolsillo: Aprendiendo física con tu smartphone. Dialnet.Unirioja.Es, 6, 28–35. https://dialnet.unirioja.es/servlet/articulo?codigo=5737900

Salinas Marín, I. (2019). Didáctica de la Física Experimental con Smartphones [Tesis doctoral, Universitat Politècnica de València]. https://doi.org/10.4995/Thesis/10251/125698

Sari, S., Rahim, F., Sundari, P., & Aulia, F. (2022). The importance of e-books in improving students’ skills in physics learning in the 21st century: A literature review. Journal of Physics: Conference Series, 2309(1), 012061. https://doi.org/10.1088/1742-6596/2309/1/012061

Semernia, O., Rudnytska, Z., & Borodiy, I. (2024). The impact of digital resources on modernizing natural science education. Collection of Scientific Papers Kamianets-Podilsky Ivan Ohienko National University Pedagogical Series, 30, 30–34. https://doi.org/10.32626/2307-4507.2024-30.30-34

Shafiq, M., Sami, M., Bano, N., Bano, R., & Rashid, M. (2025). Artificial intelligence in physics education: Transforming learning from primary to university level. Indus Journal of Social Sciences, 3(1), 1–15. https://doi.org/10.59075/ijss.v3i1.807

Sharma, A., Patwardhan, S., Mani, S., & Chawade, S. (2023). An e-learning approach to implement flipped learning pedagogy for physics course. En 2023 6th International Conference on Advances in Science and Technology (ICAST) (pp. 575–580). IEEE. https://doi.org/10.1109/ICAST59062.2023.10455068

Tan, D., & Cheah, C. (2021). Developing a gamified AI-enabled online learning application to improve students' perception of university physics. Computers and Education: Artificial Intelligence, 2, 100032. https://doi.org/10.1016/j.caeai.2021.100032

Timchenko, S., Semikolenov, A., Zadorozhnyi, N., Chuev, A., & Dementeva, O. (2020). The course of physics at the technical university digital education system. ITM Web of Conferences, 35, 01020. https://doi.org/10.1051/itmconf/20203501020

Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., ... & Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850

Turrubiartes, M., Turrubiartes, I., Posadas, M., & Reyes, J. (2020). Teaching Physics in higher education: use of information and communication technologies and digital resources. En 2020 X International Conference on Virtual Campus (JICV) (pp. 1–3). IEEE. https://doi.org/10.1109/JICV51605.2020.9375694

Van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-0

Yevtushenko, Y. (2024). Innovative teaching methods in medical and biological physics in higher education: Integration of pedagogical technologies and a scientific approach. Education and Pedagogical Sciences, 187(1), 47–59. https://doi.org/10.12958/2227-2747-2024-3(187)-47-59

Yang, T. (2025). Digital intelligence technology creates a new paradigm of blended teaching in college physics courses. Education Reform and Development, 7(1), 1–12. https://doi.org/10.26689/erd.v7i1.9597

Yusuf, I., & Widyaningsih, S. (2020). Implementing e-learning-based virtual laboratory media to students' metacognitive skills. International Journal of Emerging Technologies in Learning (iJET), 15(5), 63–74. https://doi.org/10.3991/ijet.v15i05.12029

Zambrano-Cedeño, A. A., Intriago-Delgado, Y. M., & Carrión-Cano, H. A. (2024). Recursos digitales para el refuerzo pedagógico en contenidos de la asignatura de física. MQRInvestigar, 8(4), 87–106. https://doi.org/10.55905/mqrij.v8.n4-008

Zataraín-Cabada, R., Estrada, M., Cárdenas-Sainz, B., & Chavez-Echeagaray, M. (2022). Experiences of web‐based extended reality technologies for physics education. Computer Applications in Engineering Education, 31(1), 63–82. https://doi.org/10.1002/cae.22571