Recursos digitales de aprendizaje en la física universitaria: una revisión de alcance sobre el uso estudiantil y las tendencias del conocimiento
Contenido principal del artículo
Resumen
Esta revisión de alcance explora los recursos digitales de aprendizaje empleados en la enseñanza de la física en la educación superior y cómo los y las estudiantes los utilizan. A partir de una búsqueda sistemática en bases académicas y el análisis de referencias, se seleccionaron 50 estudios publicados principalmente en los últimos cinco años. Los resultados indican una producción científica global y reciente, centrada en doce categorías de recursos, entre las que destacan laboratorios virtuales, simuladores interactivos, plataformas educativas, inteligencia artificial, gamificación y tecnologías inmersivas. El análisis del conocimiento muestra una concentración temática en simulaciones y entornos virtuales, mientras que tecnologías emergentes aún ocupan un lugar marginal, lo que revela brechas de investigación. Se identificaron cinco formas en que los y las estudiantes usan estos recursos: para experimentar de manera virtual, visualizar fenómenos físicos, colaborar en línea, autoevaluarse con retroalimentación inmediata y desarrollar habilidades metacognitivas y digitales. Estos usos reflejan prácticas activas y centradas en el aprendizaje, siempre mediadas por el diseño pedagógico. Aunque se reportan beneficios como mayor comprensión conceptual y autonomía, persisten desafíos relacionados con la desigualdad en el acceso y la necesidad de formación docente. La revisión concluye que, pese al crecimiento de recursos multimodales, el campo carece de coherencia pedagógica: la mera disponibilidad tecnológica no garantiza aprendizajes profundos. Por ello, se recomienda fortalecer la formación docente en diseño instruccional, promover investigaciones en contextos no anglosajones y explorar el potencial educativo de tecnologías emergentes desde marcos didácticos intencionados.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
Abdoune, A., Meraoui, M., Abderrahman, M., & Khaldi, M. (2024). Using multimedia learning theory in physics teaching and learning: Work methodology. Global Journal of Engineering and Technology Advances, 21(3), 0230. https://doi.org/10.30574/gjeta.2024.21.3.0230
Asencios-Trujillo, L., Asencios-Trujillo, L., LaRosa-Longobardi, C., Gallegos-Espinoza, D., Piñas-Rivera, L., & Perez-Siguas, R. (2024). Virtual Assistance System for Teaching Physics Experiments in University Students. Journal of Advanced Research in Applied Sciences and Engineering Technology, 40(1), 109–117. https://doi.org/10.37934/araset.40.1.109117
Asrizal, A., N, A., Festiyed, F., Ashel, H., & Amnah, R. (2023). STEM-integrated physics digital teaching material to develop conceptual understanding and new literacy of students. Eurasia Journal of Mathematics, Science and Technology Education. https://doi.org/10.29333/ejmste/13275
Azlan, C., Wong, J., Tan, L., Huri, M., Ung, N., Pallath, V., Tan, C., Yeong, C., & Ng, K. (2020). Teaching and learning of postgraduate medical physics using Internet-based e-learning during the COVID-19 pandemic – A case study from Malaysia. Physica Medica, 80, 10–16. https://doi.org/10.1016/j.ejmp.2020.10.002
Bohórquez Guevara, V. M. (2024). Desafíos en la enseñanza de la física: Análisis a partir de una revisión bibliográfica. Ciencia Latina Revista Científica Multidisciplinar, 8(1), 8702–8715. https://doi.org/10.37811/cl_rcm.v8i1.10202
Braun, V., Clarke, V., & Weate, P. (2016). Using thematic analysis in sport and exercise research. En G. Smith & J. McGannon (Eds.), Routledge handbook of qualitative research in sport and exercise (pp. 213–227). Routledge.
Cəfərov, S., Qardaşbəyova, N., Tağiyev, E., & Məhərrəmova, A. (2025). Designing physics lessons and methodology of using electronic educational resources in their conduct. Scientific Works, 2(2), 162–170. https://doi.org/10.69682/arti.2025.92
Chen, C., Wang, F., Huang, Z., Li, Z., Zhao, D., & Zhang, L. (2024). Production and teaching application of micro-video resources for university physics experiments. En 2024 13th International Conference on Educational and Information Technology (ICEIT) (pp. 367–372). IEEE. https://doi.org/10.1109/ICEIT61397.2024.10540996
Chen, L. (2024). Design and research of an intelligent learning system for university physics. Journal of Contemporary Educational Research, 8(7), 1–10. https://doi.org/10.26689/jcer.v8i7.7792
Daineko, Y., Dmitriyev, V., & Ipalakova, M. (2017). Using virtual laboratories in teaching natural sciences: An example of physics courses in university. Computer Applications in Engineering Education, 25(1), e21777. https://doi.org/10.1002/cae.21777
Demera-Zambrano, K. C., García, M. A. R., Cedeño, C. L. C., Navarrete-Solórzano, D. A., Mero, R. C. S., & Moreira, M. V. P. (2023). Aprendizaje Híbrido: La transformación digital de las prácticas de enseñanza. Ciencia Latina Revista Científica Multidisciplinar, 7(1), 9377-9397.
Delgado, F. (2021). Teaching Physics for Computer Science Students in Higher Education During the COVID-19 Pandemic: A Fully Internet-Supported Course. Future Internet, 13(2), 35. https://doi.org/10.3390/fi13020035
Faulconer, E., Griffith, J., Wood, B., Acharyya, S., & Roberts, D. (2018). A comparison of online, video synchronous, and traditional learning modes for an introductory undergraduate physics course. Journal of Science Education and Technology, 27(5), 404–411. https://doi.org/10.1007/s10956-018-9732-6
García-Valcárcel Muñoz-Repiso, A. (2016). Recursos digitales para la mejora de la enseñanza y el aprendizaje. Revista de Educación, 372, 1–20.
Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(1), e1230. https://doi.org/10.1002/cl2.1230
Hwang, G. J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100001. https://doi.org/10.1016/j.caeai.2020.100001
Kharki, K., Berrada, K., & Burgos, D. (2021). Design and implementation of a virtual laboratory for physics subjects in Moroccan universities. Sustainability, 13(7), 3711. https://doi.org/10.3390/su13073711
Kratova, I., Stefanova, G., Kirillova, T., & Proyanenkova, L. (2024). Developing the professional competencies of a physics teacher in a digital learning environment based on the psychological theory of activity. En Proceedings of the 2nd International Interdisciplinary Scientific Conference “Digitalization and Sustainability for Development Management: Economic, Social, and Environmental Aspects” (p. 0182412). AIP Publishing. https://doi.org/10.1063/5.0182412
Kafle, R. (2024). Interactive multimedia in teaching physics concepts effectively. Journal of Nepal Physical Society, 10(1), 1–8. https://doi.org/10.3126/jnphyssoc.v10i1.72833
Lahme, S., Klein, P., Lehtinen, A., Müller, A., Pirinen, P., Rončević, L., & Sušac, A. (2023). Physics lab courses under digital transformation: A trinational survey among university lab instructors about the role of new digital technologies and learning objectives. Physical Review Physics Education Research, 19(2), 020159. https://doi.org/10.1103/PhysRevPhysEducRes.19.020159
Levac, D., Colquhoun, H., & O'Brien, K. K. (2010). Scoping studies: advancing the methodology. Implementation Science, 5(1), 69. https://doi.org/10.1186/1748-5908-5-69
Lidiawati, M. (2024). The role of e-books in learning physics: Literature review. Physics Learning and Education, 2(2), 1–10. https://doi.org/10.24036/ple.v2i2.76
Muliani, D., Azmi, K., Alius, M., Sulvayenti, A., & Amelia, L. (2024). The influence of Classpoint media on the learning motivation of Physics Education Study Program students. Kasuari: Physics Education Journal (KPEJ), 7(1), 1–10. https://doi.org/10.37891/kpej.v7i1.484
Nungu, L., Mukama, E., & Nsabayezu, E. (2023). Online collaborative learning and cognitive presence in mathematics and science education. Case study of university of Rwanda, college of education. Education and Information Technologies, 1–20. https://doi.org/10.1007/s10639-023-11607-w
Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2023). Assessing the impact of multimedia application on student conceptual understanding in Quantum Physics at the Rwanda College of Education. Education and Information Technologies, 1–18. https://doi.org/10.1007/s10639-023-11970-8
Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2023). Multimedia-aided technologies for effective learning of quantum physics at the university level. Journal of Science Education and Technology, 32, 686–696. https://doi.org/10.1007/s10956-023-10064-x
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.rec.2021.03.001
Peng, M., & Wei, X. (2024). Strategies for the application of digital means in teaching university physics. Region - Educational Research and Reviews, 6(10), 1–15. https://doi.org/10.32629/rerr.v6i10.2691
Poultsakis, S., Papadakis, S., Kalogiannakis, M., & Psycharis, S. (2021). The management of digital learning objects of natural sciences and digital experiment simulation tools by teachers. Advances in Mobile Learning Educational Research, 1(2), 58–71. https://doi.org/10.34748/AMLER.2021.01.02.05
Ramaila, S. (2024). Leveraging ICT tools for teaching and learning in the domain of physical sciences. En Education and New Developments 2024 – Volume 1 (pp. 1–10). InScience Press. https://doi.org/10.36315/2024v1end098
Rebollo, M., & García-Romero de Tejada, M. (2016). El laboratorio en el bolsillo: Aprendiendo física con tu smartphone. Dialnet.Unirioja.Es, 6, 28–35. https://dialnet.unirioja.es/servlet/articulo?codigo=5737900
Salinas Marín, I. (2019). Didáctica de la Física Experimental con Smartphones [Tesis doctoral, Universitat Politècnica de València]. https://doi.org/10.4995/Thesis/10251/125698
Sari, S., Rahim, F., Sundari, P., & Aulia, F. (2022). The importance of e-books in improving students’ skills in physics learning in the 21st century: A literature review. Journal of Physics: Conference Series, 2309(1), 012061. https://doi.org/10.1088/1742-6596/2309/1/012061
Semernia, O., Rudnytska, Z., & Borodiy, I. (2024). The impact of digital resources on modernizing natural science education. Collection of Scientific Papers Kamianets-Podilsky Ivan Ohienko National University Pedagogical Series, 30, 30–34. https://doi.org/10.32626/2307-4507.2024-30.30-34
Shafiq, M., Sami, M., Bano, N., Bano, R., & Rashid, M. (2025). Artificial intelligence in physics education: Transforming learning from primary to university level. Indus Journal of Social Sciences, 3(1), 1–15. https://doi.org/10.59075/ijss.v3i1.807
Sharma, A., Patwardhan, S., Mani, S., & Chawade, S. (2023). An e-learning approach to implement flipped learning pedagogy for physics course. En 2023 6th International Conference on Advances in Science and Technology (ICAST) (pp. 575–580). IEEE. https://doi.org/10.1109/ICAST59062.2023.10455068
Tan, D., & Cheah, C. (2021). Developing a gamified AI-enabled online learning application to improve students' perception of university physics. Computers and Education: Artificial Intelligence, 2, 100032. https://doi.org/10.1016/j.caeai.2021.100032
Timchenko, S., Semikolenov, A., Zadorozhnyi, N., Chuev, A., & Dementeva, O. (2020). The course of physics at the technical university digital education system. ITM Web of Conferences, 35, 01020. https://doi.org/10.1051/itmconf/20203501020
Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., ... & Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
Turrubiartes, M., Turrubiartes, I., Posadas, M., & Reyes, J. (2020). Teaching Physics in higher education: use of information and communication technologies and digital resources. En 2020 X International Conference on Virtual Campus (JICV) (pp. 1–3). IEEE. https://doi.org/10.1109/JICV51605.2020.9375694
Van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-0
Yevtushenko, Y. (2024). Innovative teaching methods in medical and biological physics in higher education: Integration of pedagogical technologies and a scientific approach. Education and Pedagogical Sciences, 187(1), 47–59. https://doi.org/10.12958/2227-2747-2024-3(187)-47-59
Yang, T. (2025). Digital intelligence technology creates a new paradigm of blended teaching in college physics courses. Education Reform and Development, 7(1), 1–12. https://doi.org/10.26689/erd.v7i1.9597
Yusuf, I., & Widyaningsih, S. (2020). Implementing e-learning-based virtual laboratory media to students' metacognitive skills. International Journal of Emerging Technologies in Learning (iJET), 15(5), 63–74. https://doi.org/10.3991/ijet.v15i05.12029
Zambrano-Cedeño, A. A., Intriago-Delgado, Y. M., & Carrión-Cano, H. A. (2024). Recursos digitales para el refuerzo pedagógico en contenidos de la asignatura de física. MQRInvestigar, 8(4), 87–106. https://doi.org/10.55905/mqrij.v8.n4-008
Zataraín-Cabada, R., Estrada, M., Cárdenas-Sainz, B., & Chavez-Echeagaray, M. (2022). Experiences of web‐based extended reality technologies for physics education. Computer Applications in Engineering Education, 31(1), 63–82. https://doi.org/10.1002/cae.22571